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In 1996, philosopher Helen Nissenbaum issued a clarion call concerning
the erosion of accountability in society due to the ubiquitous delegation
of consequential functions to computerized systems. Using the conceptual
framing of moral blame, Nissenbaum described four types of barriers to ac-
countability that computerization presented: 1) “many hands,” the problem
of attributing moral responsibility for outcomes caused by many moral ac-
tors; 2) “bugs,” a way software developers might shrug off responsibility
by suggesting software errors are unavoidable; 3) “computer as scapegoat,”
shifting blame to computer systems as if they were moral actors; and 4)
“ownership without liability,” a free pass to the tech industry to deny re-
sponsibility for the software they produce. We revisit these four barriers
in relation to the recent ascendance of data-driven algorithmic systems —
technology often folded under the heading of machine learning (ML) or ar-
tificial intelligence (AI) — to uncover the new challenges for accountability
that these systems present. We then look ahead to how one might construct
and justify a moral, relational framework for holding responsible parties ac-
countable, and argue that the FAccT community is uniquely well-positioned
to develop such a framework to weaken the four barriers.

Additional Key Words and Phrases: accountability, moral philosophy, ro-
bustness, data-driven algorithmic systems

1 INTRODUCTION

In 1996, writing against the backdrop of the meteoric rise of the
commercial Internet [85], Helen Nissenbaumwarned of the erosion
of accountability due to four barriers inimical to societies increas-
ingly reliant on computerized systems [102]. These barriers are:
“many hands,” borrowing a term from philosophy to refer to the
problem of attributing moral responsibility for outcomes caused
by multiple moral actors; “bugs,” a way software developers might
shrug off responsibility by suggesting software errors are unavoid-
able; “computer as scapegoat,” shifting blame to computers as
if they were moral actors; and “ownership without liability," a
free pass to the software industry to deny responsibility, particu-
larly via shrink-wrap and click-wrap Terms of Service agreements.
Today, twenty-five years later, significant work has been done to
address the four barriers, for example, through developments in
professional practices of computer science [67, 134], organizational
management [68], and civil law [43, 97]; however, on the whole, the
effort to restore accountability remains incomplete. In the interim,
the nature of computerized systems has once again been radically
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transformed — this time by the ascendance of data-driven algorith-
mic systems1 characterized by machine learning (ML) and artificial
intelligence (AI), which either have replaced or complemented rule-
based software systems, or have been incorporated within them as
essential elements [12, 27, 82, 98, 149].
The resurgent interest in accountability, particularly among the

FAccT community, is therefore timely for a world in which data-
driven algorithmic systems are ubiquitous. In domains as varied
as finance, criminal justice, medicine, advertising, entertainment,
hiring, manufacturing, and agriculture, these systems are simulta-
neously treated as revolutionary, adopted in high-stakes decision
software and machines [6–8, 75], and as novelties [74]. The failure
to comprehensively establish accountability within computational
systems through the 1990s and 2000s has therefore left contempo-
rary societies just as vulnerable to the dissipation of accountability,
with even more at stake. We remain in need of conceptual, techni-
cal, and institutional mechanisms to assess how to achieve account-
ability for the harmful consequences of data-driven algorithmic sys-
tems — mechanisms that address both whom to hold accountable
and how to hold them accountable for the legally cognizable harms
of injury, property loss, and workplace hazards, and the not-yet-
legally-cognizable harms increasingly associated with data-driven
algorithmic systems, such as privacy violations [30], manipulative
practices [5, 80], and unfair discrimination [6]. In light of growing
concerns over accountability in computing, our paper revisits Nis-
senbaum’s “four barriers to accountability” to assess whether in-
sights from that work remain relevant to data-driven algorithmic
systems and, at the same time, how the ascendance of such systems
complicates, challenges, obscures, and demands more of technical,
philosophical, and regulatory work.

We next provide necessary background concerning recent develop-
ments standards of care, law and policy, and computer science that
will assist us in our analysis. Equipped with this context, we orient
ourselves in a broad range of disciplines (Section 2) in order to ex-
amine each of Nissenbaum [102]’s four barriers to accountability
in relation to data-driven algorithmic systems (Section 3). Having
re-introduced and updated the discussion of the barriers, we then
integrate our conceptual framing to suggest how one might con-
struct and justify a moral, relational framework for holding respon-
sible parties accountable, and argue that the FAccT community is
uniquely well-positioned to develop such a framework to weaken
the four barriers (Section 4).

1Since rule-based software systems are also “algorithmic,” we will take care to spec-
ify which of the meanings we intend in settings where the context of use does not
disambiguate.
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1.1 Contemporary Interventions in Accountability and
Data-Driven Algorithmic Systems

Re-visiting the four barriers requires engaging with the significant
body of contributions concerning accountability produced in the in-
terim. Rather than comprehensively reviewing existing literature —
an immense undertaking already addressed inwork such asWieringa
[145] and Kohli et al. [77] — we touch on three areas of work that
we find useful for our analysis of the four barriers in Section 3: stan-
dards of care, law and policy, and computer science.

Standards of care. Standards of care play a crucial role in build-
ing a culture of accountability through establishing best practices.
They provide formal guidelines for ensuring and verifying that con-
crete practices align with agreed-upon values, such as safety and
reliability [102]. In engineering, standards of care dictate the be-
haviors and outputs that ought to be expected. Concerning data-
driven algorithmic systems in particular, such standards of care
have taken the form of model cards [94, 119], data sheets [55], an-
notations [13], audits [6], and frameworks [66] concerning the ap-
propriate use of data and other artifacts, which are often developed
and used in the production of AI and ML systems [22, 91]. Taken
together, these standards of care enable accountability by making
the intentions and expectations around such systems concrete; they
provide a baseline against which one can evaluate deviations from
expected behavior, and thus can be used to review and contest the
legitimacy of specific uses of data-driven techniques.
In certain cases, scholars have re-framed accountability standards

around harmed and vulnerable parties [93, 110]. This work — par-
ticularly that which focuses on transparency [39] and audits [135]
— makes clear that standards of care and frameworks, while im-
portant for developing actionable notions of accountability, do not
guarantee accountability on their own. Algorithmic impact assess-
ments (AIAs) attempt to fill this gap [96]. They task practition-
ers with assessing new technologies [115] with respect to the im-
pacts they produce [93]. IAs formalize accountability relationships
in ways to systematically address and correct algorithmic harms.

Law and policy. Democratic legal literature on data-driven algo-
rithmic systems generally concerns AI/ML-related harms and cor-
responding ex post interventions [6, 100]. For example, work on
liability spans both anticipated harms related to new or forthcom-
ing data-driven technology, including autonomous vehicles (AVs)
and robotics [3, 7, 42, 128], and not-yet-legally-cognizable harms,
such as unfair discrimination due to demographically-imbalanced,
biased, or otherwise-discredited training data [63, 103, 140], privacy
violations [30, 35, 71], and manipulation [80]. Regulatory and ad-
ministrative scholarship tends to analyze data-driven algorithmic
systems in relation to pre-existing legislation and policy [98, 112,
117, 137, 144]. One notable exception is GDPR — the nascent, yet
wide-reaching data-privacy policy in the EU—which has also been
applied to AI/ML systems [59, 72, 139].
Transparency is intimately connected to accountability. It is nec-

essary for identifying responsible parties (in order to attributeharms
to those who are responsible for them), and necessary for identify-
ing the means by which harms came about (so that harms can be
mitigated) [39]. Transparency is therefore of broad import in demo-
cratic governance [97], and therefore in law and policy. This work

spans a variety of urgent issues regarding lack of transparency in
data-driven algorithmic systems. Concerning data [88, 138], lack of
transparency is implicated in the obfuscation of data provenance,
particularly via the concentration of data ownership within data
brokers [44, 83, 148]; concerning algorithms and models, insuffi-
cient transparency contributes to the inscrutability of algorithmic
decisions [31, 82, 84]. As a result, outsourcing legal decisions to
automated tools, particularly data-driven tools that obscure under-
lying logic, can create a crisis of legitimacy in democratic decision-
making [26, 29, 98, 133].

Computer science. Research in computer science, especially in
ML, has increasingly treated accountability as a topic for scholarly
inquiry. In updating Nissenbaum [102]’s barriers, we address cases
in which researchers explicitly recognize the relationship between
their work and accountability [73] — namely, in auditing and trans-
parency — and work concerning robustness, which we identify as
having significant implications for accountability, even when this
work does not make this claim explicitly. Concerning auditing, re-
cent work underscores the importance of being able to analyze al-
gorithmic outputs to detect and correct for the harm of unfair dis-
crimination [4, 110]. Transparency tends to be treated as a prop-
erty of models, particularly with regard to whether a model is in-
terpretable or explainable to relevant stakeholders [14, 40, 52].2

More recently, computational work has begun to take a more ex-
pansive view of transparency, applying it to other parts of the ML
pipeline, such as problem formulation, data provenance, and model
selection choices [50, 50, 81, 121, 122]. Lastly, broadly construed,
robustness concerns whether a model behaves as expected — un-
der expected, unexpected, anomalous or adversarial conditions. De-
signing for and evaluating robustness implicates accountability, as
it requires researchers to rigorously define their expectations con-
cerning model performance; this in turn enables lines of inquiry
aimed at both preventing deviations from those expectations, and
identifying (and ideally correcting for) such deviations when they
do occur. Robustness thus encompasses work in ML that aims to
achieve proven theoretical guarantees in practice [69, 92, 147, 150],
and work that, even in the absence of such guarantees, produces
models that exhibit reproducible behavior empirically [19, 109]. Ro-
bustness also includes the ability for ML models to generalize be-
yond the data on which they were trained [65, 101], ranging from
natural cases of distribution shift [76, 104] to handling the pres-
ence of adversaries that are trying to control or game model out-
puts [34, 57, 105, 129].

2 CONCEPTUAL FRAMING

We now turn to the conceptual framing we draw on for the re-
mainder of the paper. We contextualize notions of accountability
in relation to two areas: 1) contemporary moral philosophy, which
situates accountability in a relationship between multiple actors;
2) the so-called “narrow” definition of accountability, largely influ-
enced by Mark Bovens, whose framework for identifying account-
ability relationships has received attention from scholars interested

2It has long been contested whether metrics for model interpretability are sufficient
for human comprehension [28].

, Vol. 1, No. 1, Article . Publication date: February 2022.



Accountability in an Algorithmic Society • 3

in “algorithmic accountability,” especially within the FAccT com-
munity [69, 81, 145].

2.1 Accountability in Moral Philosophy

There have been various attempts in moral philosophy to develop
rigorous notions of accountability. We focus on two threads in the
literature — blameworthiness and relationships between moral actors,
and correspondences between the two.

Blame.Nissenbaum [102] anticipated a problem of diminishing ac-
countability as societies become increasingly dependent on com-
puterized systems. The concern in question, simply put,was a grow-
ing incidence of harms to individuals, groups, or even societies for
which no one would step forward to answer. In explaining how
and why barriers to accountability emerge, the article turned to the
work of legal philosopher Joel Feinberg to ground its conception of
accountability. According to Feinberg, blame, defined in terms of
causation and faultiness, is assigned to moral agents for harms they
have caused due to faulty actions [46, 47].3

Following Feinberg, Nissenbaum [102] conceives of actors as ac-
countable when they step forward to answer for harms for which
they’re blameworthy. This conception of accountability focuses on
the circumstances in which harm arises and attempts to connect
an agent to the faulty actions which brought about harm. Accord-
ingly, the barriers to accountability that Nissenbaum [102] iden-
tifies arise because the conditions of accountability are systemat-
ically obscured, due, at some times, to circumstances surrounding
computerization, and at other times, to a societal breakdown in con-
fronting willful failures to step forward. Many hands obscures es-
tablishing lines of causal responsibility (Section 3.1) ; bugs obscures
the classification of errors as instances of faulty action (Section 3.2)
; scapegoating computers obscures answerable moral actors by mis-
leadingly (or mistakenly) attributing moral agency to non-moral
causes (Section 3.3) ; and ownership without liability bluntly severs
accountability from blame (Section 3.4) .

Relationality.Whereas the conception of accountability based on
blameworthiness focuses on the actions and the actor causing harm
through faulty behavior, recent philosophical work expands its fo-
cus to consider responsibility in light of the relationships between
moral actors. Watson [142], for example, argues that responsibil-
ity should cover more than attributablility, a property assigned to
an actor for bringing about a given outcome [130]. A second di-
mension, which he calls accountability, situates responsibility in a
relationship among actors. ForWatson, “Holding people responsible

3Although neither of the two core elements is straightforward — in fact, the subjects
of centuries of philosophical and legal thinking — we will reach deeper only when
our core lines of inquiry demand it. Dating back thousands of years, philosophers
have grappled with causation as a metaphysical challenge and a moral one of assign-
ing causal responsibility. To this day the fascination holds, claiming the attention of
computer scientists [58]. The concept of faultiness, likewise, is complex. To begin, it
presumes free agency, itself a state whose metaphysical character and its role in moral
attribution the subject of centuries’ long debate. Among contemporary writings on
free action, Harry Frankfurt’s work [51], for example, has added further twists and ex-
panded lines of scholarship. Faultiness is a basic concept in all legal systems and courts
as well as legal scholarship have weighed in on it giving rise to widely adopted cate-
gories of harmful actions as intentional, reckless, and negligent, which have informed
judgements of legal liability [45, 46, 95]. The elements of recklessness and negligence
are particularly relevant to our analysis because they presume implicit or explicit stan-
dards, or expectations, that an actor has failed to meet.

is not just a matter of the relation of an individual to her behavior;
it also involves a social setting in which we demand (require) cer-
tain conduct from one another and respond adversely to another’s
failures to complywith these demands" [142, p 229]. Other work, in-
cluding T.M. Scanlon’s theory of responsibility, provides accounts
of both being responsible and being held responsible, where the lat-
ter describes situations when parties violate relationship-defined
norms [113, 120]. The moral obligations that actors have to one an-
other are tied to the placement of responsibility and blame. Accord-
ingly, the characteristics of a harmed party might dictate whether,
or what, accountability is needed. For instance, if one harms in self
defense, there may be no moral imperative to hold them account-
able.

The works discussed attempt to situate accountability in the rela-
tionships — social, political, institutional, and interpersonal — in
which we are enmeshed. Accordingly, the relationship-defined obli-
gations we have to one another — as spouses, citizens, employees,
or friends — may dictate what it is we are responsible for, as well
as the contours of accountability we can expect. By situating ac-
countability not just as attributability between action and actor,
but instead within a social framework, some of what has come out
of the so-called “narrow” notion of accountability in political the-
ory (discussed in Section 2.2) can be derived from the vantage of a
more “pure” moral philosophy. Rather than formally pursuing

this derivation here, we instead simply suggest that these no-

tions of accountability need not be framed as alternatives to

one another. Moral philosophy, then, can offer a conceptual in-
frastructure through which a given relational framing — be it in-
terpersonal, institutional, or political — can be said to be legitimate

and ethically viable. Similarly, for practitioners holding a variety
of organizational positions, the moral responsibilities that individ-
uals hold can shape the ethical obligations and specific forms of
accountability at play.

2.2 A “Narrow” Definition

In the past few years, “algorithmic accountability”4 has attracted
growing interest in approaches that are institutional or structural in
character. The work of political scientist Mark Bovens, particularly
his “narrow definition” [20, 21] of accountability, has informed re-
cent work on accountability for “algorithmic systems” [145]. Prompted
by a concern that newly formed governmental structures and pub-
lic authorities comprising the European Union lack “appropriate
accountability regimes” [21, p. 447], Bovens proposes an account-
ability framework that comprises two key actors: an accountable

actor and a forum. In the face of certain conditions, or in the wake
of certain incidents, an accountable actor has an obligation to a
forum to explain and justify itself — to address a forum’s ques-
tions and judgments, be judged by a forum and possibly suffer sanc-
tions. Bovens calls this a “relational” definition5 because it defines
accountability as a social relation between one actor (e.g. govern-
mental department, a board, an agency, a committee, a pubic au-
thority, or a person acting in an official capacity) and another actor

4Concerns with the phrase will be discussed in the “Scapegoat" section of this paper.
5We would argue that Bovens’s relational framework is social in the sense given
by Watson [142], mentioned above.

, Vol. 1, No. 1, Article . Publication date: February 2022.



4 • Cooper, Laufer, Moss, and Nissenbaum

(e.g. a governmental entity, watchdog group, oversight committee,
or even an individual person acting in a capacity, e.g. journalist.)
The actor — accountable actor and forum — are defined in relation
to each other. Unlike in the work of the moral philosophers

discussed above (Section 2.1), Bovens’s framework is not di-

rected at rights and obligations we have to one another as

moral actors, but rather as actors in roles and capacities de-

fined by the respective sociopolitical structures in which we

live.
Bovens’s approach to accountability has emerged as an attrac-

tive framework for promoting accountability in societies that have
given over key controls and decisions to AI/ML, as it has been
recognized in FAccT literature that a relational framework may
compel clarity on murky issues [69, 145]. For one, as discussed
in Wieringa [145], Bovens directly illuminates the sociopolitical
stakes of transparency, explainability, and interpretability, illustrat-
ing why these concepts are necessary for any accountability frame-
work for data-driven societies, even though they are ultimately not
sufficient to constitute accountability in and of themselves.6 For
another, Bovens allows us to highlight parameters for what con-
stitutes accountability, and for which appropriate values need to
be specified: i.e., who is accountable, for what, to whom, and un-

der which circumstances? The values for these parameters may be
deeply contextual, and the work of tuning these parameters may,
as suggested by Metcalf et al. [93], lie in the sociopolitical contes-
tations, the “slow boring of hard boards” [143, p. 225], by the many
constituencies implicated in any particular computational system.
The domain of philosophical work that could inform amoral con-

ception of accountability is vast but not decisive in its nuances. Ac-
cordingly, we hold onto the bare bones of Joel Feinberg’s notion
of blameworthiness (Section 2.1), with one amendment, as we re-
visit the four barriers in light of data-driven algorithmic systems.
The amendment shines a spotlight onmoral claims of the af-

fected, or harmed parties whose position in relation to those

whose actions have harmed them may obligate the latter to

account for this. This work in moral philosophy aligns with work
on accountability as a property of social structures, which holds it
to be relational — not merely as a requirement on an accountable
party to “own up” to blameworthy action as an obligation to an-
other. We reserve a fuller discussion of work on accountability as a
property social arrangements for Section 4. For now, we merely

remark that this work is not an alternative to the concep-

tion of accountability as stepping forward for blameworthy

action. Rather, the two are co-existent, each applying to a dif-

ferent object: one an attribute of moral actors, the other, an

attribute of institutional, or societal structures.

As we demonstrate below in Section 3, we find that data-driven
algorithmic systems heighten the barriers to accountability as es-
tablishing the conditions of blame — causal responsibility and fault
— are even further obscured and, in turn, the ability for blamewor-
thy actors to obfuscate their roles reduces pressure to step forward.

6We return to this idea in Section 4.

3 REVISITING THE FOUR BARRIERS TO
ACCOUNTABILITY

In a typical scenario in which software is integrated into a func-
tional system — fully or partially displacing (groups of) human ac-
tors — it may not be obvious that accountability could be displaced
along with human actors who, frequently, are its bearers. The cu-
mulative effect of such displacements is the increasing incidence of
harmful outcomes for which no one answers, whether these out-
comes are major or minor, immediate or long-term, or accrue to
individuals or to societies. Resuscitating accountability is no sim-
ple task — so Nissenbaum [102] argues — because computerization
sets up particularly troublesome barriers to accountability: Many

hands (3.1), Bugs (3.2), The computer as scapegoat (3.3), and
Ownership without liability (3.4). These interdependent barri-
ers are not necessarily an essential quality of computer software.
Rather, they are a consequence of how software is produced, inte-
grated into institutions, and embedded within cyber-physical sys-
tems; they are a function of the wonderment and mystique that
has grown around computerization, and the prevailing political-
economy within which the computer and information industries
have thrived. In the sections that follow, we revisit these barriers to
accountability with an eye turned toward their implications amidst
the massive growth and adoption of data-driven algorithmic tech-
nologies. We provide examples of the barriers in action, and defer
discussion of how the barriers can be weakened to Section 4.

3.1 The Problem of Many Hands

The barrier of many hands concerns the issue that many actors
are involved in the design, development, and deployment of com-
plex computerized systems. When these systems cause harm, it can
be difficult to isolate the component(s) at the source of that harm.
In the absence of an accountability framework, this difficulty can
conceal which specific individuals should step forward to take re-
sponsibility for the harm. As Nissenbaum summarized, “Where a
mishap is the work of ‘many hands,’ it may not be obvious who is to
blame because frequently its most salient and immediate causal an-
tecedents do not converge with its locus of decision making” [102,
p. 29].
Nissenbaum further analyzes the difficulty of the barrier of many

hands by showing how it operates at four different levels: 1) soft-
ware is produced in institutional, often corporate, settings in which
there is no actor responsible for all development decisions; 2)within
these settings, multiple, diffuse, groups of engineers contribute to
different segments ormodules of the overall deployed system, which
additionally often depends on software designed and built by other
actors (which, in today’s landscape, may result in licensed or freely-
available open-source software); 3) individual software systems of-
ten interact with or depend on other software systems, which them-
selves may be unreliable or present interoperability issues; 4) hard-
ware, not just software, often contributes to overall system func-
tion, particularly in cyber-physical systems, and it can be difficult
to pinpoint if harms occur due to issues with the code, the physical
machine, or the interface between the two. Any and all of these four
levels of many hands problems can operate simultaneously, further
obscuring the source of blame.
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These particular difficulties of the problem of many hands re-
main today; moreover, they have been further complicated in nu-
merous ways, given that computer systems are now ubiquitous
rather than ascendant. We focus our discussion on how data-driven
algorithm systems further complicate this barrier, using two illus-
trative (though necessarily non-exhaustive) examples. First, we dis-
cuss how the machine learning pipeline — the multi-stage process
by which machine-learned models are designed, trained, evaluated,
and deployed — presents novel problems concerning many hands.
Second, contemporary data-driven algorithmic systems rely signif-
icantly on the composability of openly-available ML toolkits and
benchmarking suites; these toolkits, often developed andmaintained
by large tech companies, tend to be advertised as general- or multi-
purpose, and are frequently (mis)used in specific, narrow applica-
tions.

Themachine learningpipeline. TheMLpipeline is a dynamic se-
ries of steps— each ofwhich can involvemultiple (groups of) actors,
including designers, engineers, managers, researchers, and data sci-
entists. The pipeline typically starts with problem formulation and,
in commercial settings, results in the deployment (and continued
monitoring) of a trained model [106]. Problem formulation can in-
volve the collection, selection, or curation of a dataset, and then the
operationalization of a concrete task to learn, such as classifying
loan-granting decisions or generating natural-language text. The
actors responsible for formulation may then hand off their work to
others responsible for implementation: choosing the type of model
to fit to the data and the learning procedure to use for model train-
ing. In selecting the type ofmodel to train, these actorsmay custom-
design their own architecture, or may defer to using a pre-existing
model, such as an off-the-shelf neural network, which has been
designed by others, potentially at another company or institution.
The stage ofmodel training and evaluation can then begin, in which
a set of actors runs training multiple times, perhaps for multiple
combinations of chosen model types, training procedures, and hy-
perparameter values [121]. These actors compare trained models,
fromwhich they select some “best”-performingmodel (or ensemble
of models), where “best” is often informed by a chosen quantitative
metric, such as mean overall accuracy [50]. These stages of the ML
pipeline, from formulation to evaluation, are often repeated in a dy-
namic loop: Until the model passes the threshold of some specified
performance criteria, the process can cycle from (re)-modeling to
tuning and debugging. Finally, if the model is deployed in practice,
yet another set of actors who monitor the model’s behavior in prac-
tice, ensuring that it behaves in a way that aligns with expectations
developed during training and evaluation.
Each stage of the ML pipeline involves numerous actors — in

fact, potentially uncountably many actors if the pipeline employs
third-party model architectures or ML toolkits, which we discuss
below).7 Thus, if a trained model causes harms in practice, it can
be extremely challenging to tease out particular actors who should
answer for them. For example, harms could originate from how ac-
tors operationalize the learning task at the start of the pipeline [32],

7Participatory design further expands the set of many hands to end-user stake-
holder [122]. This illustrates an additional manifestation of the barrier: when harms
occur, it is possible to shift blame to harmed end-users, as they were explicitly involved
in the ML pipeline.

move fromhigh-level abstraction to concrete implementation [116],
select hyperparameters or random seeds duringmodel selection [50].
Accountability could lie with actors in any part of the pipeline, or
some combination thereof. Bias could creep in early on from the
choice of dataset, and then accumulate and become magnified fur-
ther downstream during model selection. In other words, the dif-
fuse and dynamic nature of the pipeline makes locating account-
ability extremely challenging. This can be understood as an issue
of transparency — beyond the specific the problem of model in-
terpretability — concerning who is responsible for what, and how

this can be related to overarching accountability with respect to a
model’s ultimate use in practice [81].8

Multi-purpose toolkits. Practitioners and researchers often do
not codemodel architectures or optimization algorithms from scratch.
Just like how Nissenbaum identified a problem of many hands due
to the integration of third-party software modules, builders of data-
driven algorithmic systems today often rely on toolkits produced
by others. Such toolkits, which demand tremendous mathematical
and software engineering expertise to develop, are arguably indis-
pensable to individual and small-business model developers and
data scientists. To decrease the amount of time and money spent
iterating the ML pipeline, these actors depend on the investment of
large tech companies with vast resources and large, concentrated
pools of technical talent to develop and release efficient, correct,
comprehensive, and user-friendly libraries of algorithm implemen-
tation, model architectures, and benchmark datasets [1, 107]. Of
particular note is that, due to the time and expense of training in-
creasingly larger models, some of these toolkits contain pre-trained
models — large-language models like BERT [38], which can be used
out-of-the-box or fine-tuned for particular use cases. Since such
models are conceived of as multi- or general-purpose, they have
been shown to exhibit bias-related harms when used in narrow ap-
plication contexts [78, 89, 99]. Determining blame for these types
of harms is far from simple; for example, if intended use is under-
specified, blame could lie at least partially with the model creator.

3.2 Bugs

Nissenbaum [102] uses the term “bug” to cover a variety of issues
common to software, including “modeling, design, and coding er-
rors.” Bugs are said to be “inevitable,” “pervasive,” and “endemic to
programming” — “natural hazards of any substantial system” [102,
p. 32]. Even with software debuggers and verification tools that can
assure correctness, “bugs” emerge and cause unpredictable behav-
ior when software systems are deployed and integrated with each
other in the real world. [90, 124]. In short, “bugs” are predictable
in their unpredictability; they serve as a barrier to accountability
because they cannot be helped (except in obvious cases), and there-
fore are often treated as an accepted “consequence of a glorious
technology for which we hold no one accountable” [102, p. 34].
As Nissenbaum [102] notes, what we consider to be the “inevitable”
can change over time as technology evolves, with certain types of
“bugs” spilling over into the avoidable. For example, evolving norms

8This indicates why transparency in the form of model intepretability may be impor-
tant, but is ultimately not sufficient, for identifying actors accountable for harms; irre-
spective of interpretability, the pipeline can muddle transparency.
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and new debugging tools can rebrand the “inevitable” to be sloppy
or negligent implementation, at which point programmers can be
held to account for such errors. Similarly, the advent of data-driven
algorithmic systems has recently indicated that this malleability
also extends in the other direction: New technological capabilities
can both contract and expand what we consider “inevitable” buggy
behavior. That is, while these systems contain “bugs” of the “model-
ing, design, and coding” varieties that Nissenbaum [102] describes
for rule-based programs, the statistical nature of data-driven sys-
tems presents additional types of harm-inducing errors, which may
present an additional barrier to accountability.9 For example, mis-
classifications, statistical error, and nondeterministic outputs may
cause harm, and likewise may be treated as inevitable, whichmakes
it difficult to place blame.
In relation to the treatment of “bugs” in 1996, it is important to

note that labeling these types of errors “bugs” presents a complica-
tion, as they are an inherent part of machine learning attributable
to its statistical nature. That is, misclassification, statistical error,
and nondeterminism seem to turn the notion of “bug” on its head:
Many experts would just as readily call these features of machine
learning, rather than bugs.10 Nevertheless, regardless of where one
attempts to draw the line, these errors share common elementswith
the “bugs” Nissenbaum [102] describes — namely, they fit into an
overarching category of software issue for which the ability to rea-
son about causality and fault is elusive. In other words, they present
a barrier to accountability due to being treated as “inevitable,” “per-
vasive,” and a “consequence of a glorious technology for which we
hold no one accountable” [102]. To clarify this barrier, we next con-
sider some concrete examples of “bugs” that data-driven algorith-
mic systems present.

Faultymodelingpremises. Prior to implementation, as discussed
in Section 3.1, data-driven algorithmic systems require significant
modeling decisions. For example, choosing a model to learn neces-
sarily involves abstraction and can have significant ramifications [106,
116]; assumptions during this stage of the ML pipeline can bias
the resulting computational solution space in a particular direc-
tion [53]. For example, assuming a linear model is sufficient to cap-
ture patterns in data precludes the possibility of modeling non-
linearities. When such biases involve over-simplified or faulty rea-
soning, they can result in model mis-specification and the introduc-
tion of “modeling error bugs.” Such mis-specifications may include
the assumption that values like fairness and accuracy are correctly
modeled as a trade-off to be optimized [32], and that physical char-
acteristics can serve as legitimate classification signals for identify-
ing criminals [146] or inferring sexual orientation [126, 141]. More
generally, a common modeling error involves the assumption that
a problem is amenable to classification — that it is possible to divide
data examples into separable categories in the first place [123, 127].
Being grounded in such false premises means that, even if it is pos-
sible to train mis-specified models like these to behave “accurately”
(i.e., to return better-than-chance results after learning these tasks),
the conclusions we can draw from them are unsound [32]. In these

9Of course, statistical software is not new to ML; however, the proliferation of data-
driven algorithmic systems has clarified the prevalence of such errors.
10We return to this idea in Section 3.3, in which we discuss the accountability barrier
of treating properties of ML as a scapegoat.

cases, if modeling assumptions are unclear or elided, such that one
is not able to attribute errors to them, it is easy to evade accountabil-
ity by placing blame on the presence of inexplicable, unavoidable
“bugs” endemic to computer software.

Individual errors. Avoiding faulty premises is not alone sufficient
to guarantee that the ML pipeline produces a harm-free model, as
such models tend to exhibit some level of error leading to individ-
ual instances of harm of different varieties, including disparate im-
pact or manipulation [48, 80, 89, 99]. ML has several metrics to
quantify error [17, 61]; in training, an optimization algorithm at-
tempts to minimize a chosen error metric. Nevertheless, even the
most robust, well-trained models report imperfect accuracy. In fact,
a model that achieves 100% accuracy is usually considered suspect;
it likely overfit to the training data and to exhibit poor performance
when presented with new examples [62, 125]. Therefore, when in-
dividual errors occur, they can be treated as inevitable, just like the
“bugs” Nissenbaum [102] describes, thus displacing responsibility
for the harm such errors cause affected individuals.

Bad model performance. Like the problem of excusing individ-
ual errors as unavoidable “bugs,” it is possible to treat unexpect-
edly bad overall model performance similarly. Consider a hypothet-
ical example of a (well-formulated) computer vision system used
to detect skin cancer, whose training and evaluation promise will
have a mean accuracy rate of 94%. If, once deployed, the model co-
heres with (or out-performs) its promised performance, then mis-
classifications can be said to have been anticipated or expected.11

Since expected accuracy is a probabilistic claim about what is likely
to occur, deviations from expectation can (and do) occur. If, when
monitoring a deployed model, this deviation yields a decrease in
expected model accuracy that is sustained over time, it is possible
evade accountability by ascribing the issue to the amorphous cate-
gory of “bug.” That is, calling this type of error an inevitable “bug”
avoids attributing under-performance to a particular source, which,
rather than being unavoidable, could be a result from human neg-
ligence, poor generalization, distribution shift, or other faulty be-
havior.

3.3 The Computer as Scapegoat

Nissenbaum [102] suggested that the practice of blaming a com-
puter could pose a barrier to accountability, since “having found
one explanation for an error or injury, the further role and respon-
sibility of human agents tend to be underestimated" [102, p. 34]. To
explain why people could plausibly blame computers for a wrong-
doing, Nissenbaum points to the fact that “computers perform tasks
previously performed by humans in positions of responsibility";
whereas before the human would be indicated as the blameworthy
party, the computer has now taken up the role. And yet, while com-
puter systems have become more immediate causal antecedents to
an expanding number of harms, they do not have moral agency and
thus cannot be said to conduct ethically faulty behavior [102]. We
discuss how the barrier of scapegoating the computer has become

11Individual instances of error can pose additional challenges for accountability, since
the model may still overall exhibit an expected degree of error (i.e., be within a margin
of error); in these cases, it is possible to treat “the computer as scapegoat” — another
barrier to accountability — and say error is inherent to the fundamental statistical
nature of ML. We discuss this further in Section 3.3.
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more complicated within the landscape of ubiquitous data-driven
algorithmic systems: the tendency to treat such systems as “intelli-
gent” objects with moral agency (which they do not possess) pro-
vides unprecedented opportunities to scapegoat the system or its
component algorithms [108, 132]. In seeming opposition to treat-
ing the system as intelligent or rational, the non-determinism and
stochasticity inherent in ML can cause inexplicable behavior or er-
rors, which also presents an occasion to misplace blame.

Moral agency. As data-driven algorithmic systems have become
pervasive in life-critical contexts, there has been a corresponding
tendency to anthropomorphize and equate technological processes
to human cognition [108, 132]. The “intelligence” in artificial intelli-
gence and the “learning” in machine learning would suggest a sort
of adaptive, informed decision apparatus that enables a neat place-
ment of moral blame. However, directing blame toward data-driven
algorithmic systems effectively imbues themwithmoral agency, as-
cribing them the ability to act intentionally [114].12 Nissenbaum
[102] likens blaming a computer to blaming a bullet in a shooting:
While the bullet can be said to play an active, causal role, it can-
not be said to have been intentional in its behavior. In the same
vein, a data-driven algorithmic system may play a central role in
life-critical decisions, and may even be said to make a choice in a
particular task, but such a choice does not hold a deliberate inten-
tion that constitutes moral agency [114].13

“Accountable algorithms”.This banner-phrase makes algorithms
the subject of accountability, even though algorithms cannot be said
to hold moral agency and, by extension, moral responsibility. This
popular term [82], therefore, reduces accountability to a piecemeal,
procedural quality that can be deduced from a technology, rather
than a normative concept that has to do with the moral obligations
that people have toward one another. Moreover, algorithms do not
get deployed in practice; systems (which contain algorithms) do.
When, for example, studies fairness in AI/ML-assisted judicial bail
decisions fixate on the biases that exist within an algorithm, they
fail to capture broader inequities that are systemic in complex so-
ciotechical systems, of which AI/ML techniques are just one part
[2, 10, 33].

Mathematical guarantees.This attempt to direct blame away from
people and corporations can be either strategic or unconscious. In
some cases, a group of harmed individuals do not know who to
blame (Section 3.1) and settle on blaming the system. In others,
scapegoating the system can be a way by which an actor dodges
and dissipates public ire. For example, consider the now-canonical
example of Northpointe exhibiting bias in their risk-assessment

12Proponents of the standard conception of agency in Schlosser [114] include David-
son [36], Goldman [56], and Brand [23]. It is also applied to artificial agency by Himma
[64].
13This is consistent with scholarship in both moral philosophy and legal theory con-
cerning AI, algorithms, agency, and personhood [15, 24, 64, 136]. The legal literature
has called this, particularly in relation to robots, “social valence” [25] and “The Sub-
stitution Effect” [9]. Moreover, since in the US tort law is grounded in a notion of
moral culpability, it has been ill-suited for application to AI-harm-related remedies
(see, e.g., [86]).

tool [8]; rather than attributing this bias to amistake or “bug,” North-
pointe blamed the fundamental incompatibility of different algo-
rithmic operationalizations of fairness as the source of the prob-
lem (and pointed to a specific measure, for which bias was not de-
tectable, as evidence of blamelessness).
More generally, mathematical guarantees, if blamed for harmful

outcomes, can exhibit the barrier of scapegoating. In contrast to
the example of unexpectedly poor model performance, described
above in the “Bugs” (Section 3.2, consider the following case: En-
gineers design a data-driven algorithmic system which they ana-
lytically prove — and empirically validate — meets some specified
theoretical guarantee. In particular, let us even consider the same
case we discussed for the problem of individual errors in “Bugs”:
The engineers prove that a system is 94% accurate in detecting
tumors, and then validate that this is in fact the case in practice.
This same example, depending on how it is unpacked, can exhibit
the barrier of “bugs” or the barrier of scapegoating the computer.
Above, we talked about this example in terms of individual errors,
for which responsibility for harm could be excused due to “buggy”
behavior. Here, rather than analyzing behavior at the level of indi-
vidual decisions, we examine the behavior of the model overall. If
the frequency of mis-classifications is within the model’s guaran-
teed error rate, the engineers could attempt to excuse all resulting
harms by gesturing to the fact that the model is performing exactly
as expected. In short, satisfying mathematical guarantees can serve
as a scapegoat because pointing to mathematical claims satisfied at
the model-level can serve to obscure the need to account for harms
that occur at the individual-decision level.14

Non-determinism. Data-driven algorithmic systems that involve
ML exhibit non-determinism. They involve randomization to, for
example, shuffle the order in which training data examples are pre-
sented to an algorithm. While such features of ML algorithms may
seem like technical minutiae, they in fact introduce stochasticity
into the outputs of machine-learned models: Training the same
model architecture on the same dataset with the same algorithm
— but changing the order in which the training data are supplied
to the algorithm — can yield models that behave very differently
in practice [37]. For example, as Forde et al. [50] shows, changing
the order that the data examples are presented to a train tumor-
detectionmodel can lead to surprisingly variable performance. The
relationship between training-data-ordering and the resulting vari-
ance in model performance is under-explored in the technical liter-
ature. Thus, such differences in model performance are often attrib-
uted to an inherent stochasticity in ML. The randomization used in
ML algorithmic systems — randomization on which these systems
depend — becomes the scapegoat for the harms it may cause, such
as missed tumor detection.

14And, of course, one can see-saw back-and-forth between “bug” and scapegoating
to evade accountability. If satisfying guarantees at the overall model-level is for some
reason rejected as a rationale for an individual harm, one could claim there is a “bug”; if
calling an individual decision “buggy” is rejected, and the model is classifying within
an expected threshold for error, one could then displace blame by arguing that the
model is according to its specification.
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3.4 Ownership without Liability

Nissenbaum [102] highlights a dual trend in the computer indus-
try: 1) strengthening property rights; 2) avoiding liability. Behav-
ioral trends that informed these assertions have persisted in the
decades since, with lively public debates over the fit of traditional
forms of intellectual property (i.e., copyrights, patents, and trade
secrets) to digital products such as software, data, databases, and
algorithms, and subsequent expensive legal struggles among in-
dustry titans [16]. Similarly, we have seen explicit denials of lia-
bility expressed in shrink-wrap licenses, carried over into so-called
“click-wrap” licenses, and terms of service disclaimers accompany-
ing websites, web-based services, mobile apps, IoT devices, content
moderation decisions, and the like [30, 79, 87, 131].
Before addressing how we see these trends carrying forward in

the contemporary landscape, we need to qualify our observations.
Property and liability are weighty legal concepts with long histo-
ries and rich meanings. Narrowing our view to digital technologies,
even before the 1996 paper a robust literature had grown over ques-
tions of ownership — questions that have persisted through numer-
ous landmark court cases. Liability, too, is a core legal concept that
is increasingly an issue in relation to the products and services of
digital industries. It lies outside the scope of this paper to attempt
meaningful insights into these concepts as they manifest in schol-
arship, law, and the courts. However, it is useful to observe broad
patterns and anticipate the likely actions of stakeholders.
For a start it is not difficult to see how the trends toward strong

ownership and weak liability reinforce barriers to accountability,
and also to understand why industry incumbents might support
them; liability is costly and strong property rights enrich rights
holders and empower them against competitors. Four lines of advo-
cacy on behalf of industry interests are noted below, supplementary
to those discussed in Nissenbaum [102]:
(1) Third-party providers of data-driven algorithmic systems refuse

to expose their systems to scrutiny by independent auditors on
grounds of trade-secrets [31, 54]. As long as experts maintain
that transparency is necessary to evaluate the ML pipeline and
AI development, strong property rights that block scrutiny are
barriers to accountability.

(2) Manufacturers and owners of cyber-physical systems, such as
robots, IoT devices, drones, and autonomous vehicles, evade li-
ability for harms by shifting blame to environmental factors or
humans-in-the-loop [86]. In this respect, the barrier of owner-
ship without liability for data-driven algorithmic systems sug-
gests a twist on the problem of scapegoating (Section 3.3): treat-
ing “the human user as scapegoat.” That is, claiming the user
has mis-used an AI- or ML-enabled system in order to obscure
responsibility for unclear, under-specified, or deliberately mis-
leading user interfaces or expected use, as has happened with
Tesla and accidents concerning its (so-called) “AutoPilot” au-
tonomous driving feature [18].

(3) Almost without question the computer industry, having meta-
morphosed into the data industry, has assumed ownership over
data passing through its servers [44, 83, 103]. We still do not
have clear rules of liability for industry actorswhen their servers,
holding unimaginable quantities of data, are breached [118].

(4) Technology companies hold unprecedented sway over regula-
tion. Twenty-five years ago, although the software industry
was already a force to be reckoned with, it successfully per-
suaded Congress that imposing legal constraints would stifle
innovation — that societal well-being depended on a nascent
industry that could not flourish under excessive regulatory and
legal burden. Despite the obvious maturing of the industry and
the emergence of global industry titans the innovation argu-
ment seems to hold sway [111], this time (in the US) with a
twist: concern over losing tech market dominance to emerging
economies.

4 BEYOND THE FOUR BARRIERS: LOOKING AHEAD

Nissenbaum [102] warned of a waning culture of accountability —
harms befalling individuals, groups, even societies, accepted as suf-
ferers’ bad luck, because no one would be stepping forward to an-
swer for them. In the previous section, we revisited the four bar-
riers in light of data-driven algorithmic systems and found that
the framework still provides a useful lens through which to locate
sources of the dissipation of accountability. Striking down, or even
weakening the barriers would clear the way for sound attribution
of blame, in turn exposing blameworthy parties to a societal ex-
pectation to step forward. But we have also argued that the moral
responsibility to step forward is a necessary, but insufficient, com-
ponent of accountability. In spite of, or perhaps because of the bar-
riers, established institutional frameworks calling some actors (in-
dividuals or groups) to account and empowering others to call to ac-
count, as an alternative to case-by-case attention, is a more promis-
ing approach to building a culture of accountability (Section 4.1),
and demonstrate how the FAccT community is uniquely disposed
to develop future work that would erode the barriers to both forms
of accountability (Section 4.2).

4.1 Bringing together moral and relational accountability

A robust accountability framework needs to specifywho is account-
able, for what, to whom, and under which circumstances. Bovens’
notion of relational accountability suggests such a framework, in-
cluding two key actors: a forum and an accountable actor, who has
an obligation to justify itself to the members of the forum (Sec-
tion 2.2). We have argued for the appropriateness and urgency of
unifying this relational definition with a conception of blamewor-
thiness, and now extend this argument to highlight the need for
a moral, relational accountability framework for dealing with the
harms of data-driven algorithmic systems. In light of this call, the
moral conception of accountability, on which Nissenbaum [102] de-
pended, suggests one partial answer: Those who have caused harm
through faulty action are contenders for the class of accountable
actors, and those who have suffered harm deserve a place among
the members of the forum. This point usefully clarifies a conflu-
ence between accountability as answerability for blameworthy ac-
tion, and accountability as a social arrangement. Being blamewor-
thy for harm is (almost always) a sufficient condition for being des-
ignated an accountable actor; being harmed through blameworthy
action (almost always) is a sufficient condition for being designated
a member of the forum. These two conceptions do not stand
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against one another as alternative solutions to the sameprob-

lem; they are solutions to different problems that intersect in

instructive ways.We thus show how a moral, relational account-
ability structure thus widens the scope — beyond the pair harmed
party and faulty actor — by providing examples of values for all
four parameters:

Who is accountable. Accountable actors may include those who
are not directly responsible for harm (e.g. engineers) but are desig-
nated as accountable (or liable) because of their deep pockets, ca-
pacities to render explanations, or positions in organizational hi-
erarchies, such as corporate officers or government procurers of
data-driven systems.

For what. Beyond legally-cognizable harms considered in tort law,
such as bodily injury, property damage, pecuniary losses, and even
non-physical harms, such as those to reputations, harms particu-
larly associated with data-driven algorithmic systems include pri-
vacy violations [30], unfair discrimination [6], and autonomy losses
due to manipulation [5, 80]. We take as an example privacy harms
from AI/ML. Privacy rights of data subjects, in the creation of train-
ing and testing data sets has rightfully drawn attention from advo-
cates of data sheet [22, 55], for example, and likewise a rationale for
differential privacy [41], whose focus is the data subject. But this
limited view of harmed parties fails to consider the privacy of par-
ties affected by the uses of models, even if creation of the data from
which the models are derived has followed recommended, privacy
preserving standards, e.g. anonymization, contextual integrity, per-
mission, etc. As discussed in Hanley et al. [60], a face dataset that
has been created with utmost attention to privacy, may neverthe-
less cause privacy harm when a model derived from it is used to
identify individuals as gay [141].15. In other words, once there is a
trained model, it can be used to learn things about specific people;
even if one were to anonymize a dataset for training, that dataset
— by being used for training — can be operationalized and used to
learn things about other people who are not in the dataset.

To whom. The members of the forum may not just include those
who are themselves harmed (or placed in harmsway through height-
ened risk). They may also include those deputized to represent and
advocate on behalf of vulnerable parties, such as lawyers, public
or special interest advocacy groups; or, beyond direct advocates,
groups and individuals in oversight capacities, such as journalists,
elected officials, government agencies, or professional societies.

Under which circumstances. This concerns the nature of the
obligation, or, what accountable actors may owe to the forum —
to explain, be judged, and address questions and challenges. Not
every algorithmic system used in every domain requires the same
approach to accountability. Rather, the specific responsibilities an
actor has to others are inflected by the context in which they act.

4.2 Weakening the barriers

In the previous section, we laid out what would be needed to satisfy
a moral and relational accountability framework. Any technical in-
terventions that have already been developed — notably, those that

15A related point is discussed in Barocas and Nissenbaum [11].

we have emphasized concerning transparency, audits, and robust-
ness — would need to be folded into such a framework, their use
justified in these moral and relational terms. For example, whatever
is proposed as a technical definition of transparency, it is unlikely
to satisfy the needs of all thosewho comprise a forum,whomay not
be educated in the particulars of what it means for a model to be
“interpretable.” Robustness says what expectations are, but leaves
unanswered the question of the conditions under which deviations
from expectations ought to be remedied. Relational treatments of
these issues, it would seem, require that the obligation be tuned to
the variable needs of all members of the forum.
Aside from these justifying pre-existing interventions, as we have

demonstrated in Section 3, new interventions are also needed to
weaken the barriers to accountability. For example, a moral and re-
lational accountability framework opens the aperture, in principle,
tomany, if not all, of the “many hands” being designated as account-
able actors, including dataset creators, model developers, decision
and control systems designers, purveyors, and operators of these
systems (Section 3.1. Developing rigorous standards of care could
help mitigate the problems of inappropriate use of pre-trained mod-
els and unclear measures of quality control at different stages of
the ML pipeline. For example, robust auditing mechanisms at each
stage, rather than treating auditing as an end-to-end concern [110],
could help clarify the relationship between stage-specific issues and
resulting harms.
Various harms, depending on how they are contextualized, can

implicate either the barrier of “bugs” or “scapegoating the com-
puter” (Sections 3.2 & 3.3). For example, we note that the computer
science community could have treated harms due to unfair discrim-
ination as either a “bug” or blamed them on intrinsic aspects of
AI/ML — and yet they did not. In relation to “bugs,” in the past,
unfairness often was ascribed due to biased or imbalanced training
data [49, 70]. Such biased historical data is arguably “pervasive” and
unavoidable. Similarly, the community could have set some “tolera-
ble” level of model unfairness and, as long as model met that specifi-
cation, they could have attempted to evade accountability by blam-
ing inherent properties of the model. And yet, the community does
not redirect blame for the harms of unfair discrimination to these
barriers.16 While unfair discrimination remains a serious issue in
data-driven systems, FAccT and its antecedents have made a sig-
nificant effort not to evade accountability for unfairness harms by
attributing them to “bugs” or treating the computer as scapegoat.
For example, significant attention has been paid to mitigating un-
fairness harms by developing training algorithms that are robust to
such biased input data. The field of algorithmic fairness therefore
serves an example that challenges the narrative these barriers —
an example that could encourage similar treatment of other issues
like robustness and its relationship to privacy violations, or adver-
sarial ML and its relationship to manipulation. The community has
demandedmore fromMLmodelers concerning the treatment of un-
fair discrimination; it has set expectations concerning the necessity
of interventions to root out and correct for unfairness, thereby sur-
passing the barriers of being attributed to “bugs” or scapegoated.

16Arguably, it would be repugnant to do so; the particularly ugly nature of unfair-
discrimination-related harms may be the reason they have escaped such treatment,
which could be perceived as flippant, discriminatory, and thus a harm in itself.
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Lastly, being liable is related but not identical to being account-
able (Section 3.4. The latter is applied to blameworthy parties who
step forward to answer, the former to parties who step forward
to compensate victims of harm. Often liability is assigned to those
who are found to be blameworthy. If lines of accountability are
blurred, for example, as a consequence of the barriers we have dis-
cussed, harms due to AI/ML and other data-driven algorithmic sys-
tems will be viewed as unfortunate accidents; the cost of “bad luck"
will settle on victims. Instead, legal systems have developed ap-
proaches, such as strict liability, to compensate victims harmed in
certain types of incidents even without a showing of faulty behav-
ior. Strict liability assigned to actors who are best positioned to
prevent harm is sound policy as it is likely to motivate these ac-
tors to take extraordinary care with their products. If, indeed, bar-
riers such as many hands make the attribution of blame impossible,
strict liability for a range of algorithmdriven harms, such as privacy
breaches, unfair discrimination, manipulative practices, as well as
traditional injuries would, at least, shift the “bad luck" from victims
to those best positioned to take extraordinary steps to mitigate and
prevent such harms.
FAccT has a key role in developing these and other tools to help

erode the barriers to accountability. However, the use of these tools
needs to be justified. Just as mature political governance requires
durable institutions and formal attributions of rights and duties, we
have similar needs for the governance of producers, purveyors, and
operators of data-driven algorithmic systems. That is, as we have
contended throughout this paper, accountability is moral and rela-
tional. It depends on social, legal, and political structures that pro-
vide legitimacy for the checks actors and forums place on each oth-
ers behavior; it depends on the way those checks are internalized
as professional, personal, legal, and ethical duties that motivate ac-
tors’ personal responsibility. FAccT, given its proclaimed valuing
of accountability and the array of expertise it brings together, is
uniquely positioned to help develop a relational and moral account-
ability framework — the structures that provide legitimacy, as well
as the professional codes and standards of care, disciplinary norms,
and personal mores that tie it all together. The future work of cre-
ating these structures, as we noted earlier, is no small undertaking;
it lies in the sociopolitical contestations, the “slow boring of hard
boards” [143, p. 225], by the many constituencies implicated in any
particular computational system.

5 CONCLUSION

In this paper we revisited Nissenbaum [102]’s “four barriers” to ac-
countability, with attention to the contemporary moment in which
data-driven algorithmic systems have become ubiquitious in conse-
quential decision-making contexts. We draw on conceptual fram-
ing from Nissenbaum [102]’s use of the concept of blameworthi-

ness17 and how it can be aligned with, rather than cast in opposition
to, Mark Bovens’ work on accountability as a relational property of
social structures [20, 21]. We demonstrate how data-driven algorith-
mic systems heighten the barriers to accountability with regard to
determining the conditions of blame, and look ahead to how one
might endeavor to weaken the barriers. In particular, drawing on

17 Nissenbaum [102], in turn, drew on the work of Joel Feinberg [46, 47].

both Nissenbaum and Bovens, we put forward the conditions nec-
essary to satisfy a moral and relational accountability framework,
discuss how the development of such a framework would weaken
the barriers, and argue that the FAccT community is uniquely po-
sitioned to construct such a framework and to develop lines of in-
quiry to erode the barriers to accountability. Given our tender his-
toricalmoment, addressing why these or those parties belong in the
forum or in the set of accountable actors, why those obligations are
justified, and, of course, evaluating the numerous permutations the
relational nature of the approach demands is the provenance of fu-
ture work. No easy formulations or operationalizations make sense
until we have developed a rigorous approach to justification. In our
view, this calls for expertise in relevant technologies, moral philoso-
phy, the prevailing political economy of data and computing indus-
tries, organizational sociology, prevailing political and regulatory
contexts, domain area expertise, and more — areas that FAccT has
successfully brought together under its sponsorship. It is not that
all these are needed all the time; but any of them may be called in
to develop linkages between proposed values and social welfare.
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